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HAMILTONIAN SYSTEMS WITH A SPECIFIED INVARIANT MANIFOLD 
AND SOME OF THEIR APPLICATIONS* 

The problem of constructing a Hamiltonian system whose phase flux leaves 
a specified manifold invariant is solved, and the corresponding, structur- 
ally simple Hamiltonian is found. The system is used to construct the 
solution of the Cauchy problem with an unknown boundary for a non-linear, 
first-order differential equation. A similar problem arises when studying 
singularities in the theory of optimal control and differential games /l- 
31. The second application of the results obtained consists of the study 
of two types of singularities encountered in extremal problems of dynamics. 
The paper generalizes certain results obtained in [4]. 

A.A. NHLIKYAN and A-1. OVSEEVICH 

1. Non-characteristic submanifolds. This paper investigates the geometry of sub- 
manifolds of odd codimensions in the contact manifold. These are #en used to generalize the 
classical method of characteristics referring to the submanifolds of unit codimensions (hyper- 
surfaces) [51 to make them applicable to the Cauchy problem with an unknown boundary for first- 
order equations. 

The material of Sect..l-4can be conveniently explained using the geometrical language of 
e.g. IS, 61. Below, we shall use, in particular, the concept of a contact structure. 

We shall give the name contact manifold to a pair (Mm+', 6) where Nzn+l is a smooth 
(2s + if-dimensional manifold and #% is a differential l-form on this manifold such, that the 
2-form d$ is non-degenerate on the hyperplane fl = 0 in the space T,N tangent to Mat any 
point zE M. We shall neglect, on some occasions, the upper index denoting the dimensions 
of the manifold. A typical example of a contact manifold is the space Ren+t whose points we 
shall write in the form (2, p, u) where x, p ER", u E R, with the differential form a = du - 
ZpidZi. 

Let W!@-k)C:Msn+l be a submanifold of even dimenions 2 (n - k),k< n (or, which amounts 
to the same thing, of odd dimensions 2k $1) ), in the contact manifold M. We shall call W 
a submanifold non-characteristic at the point z E W, if 

1) the submanifold Wis transversal to the contact hyperplane, i.e. the intersection P, 
of the plane T,W tangent to F? with the contact hyperplane p = 0 has dimensions 2fn - k) - 1; 

2) the form d@ on P, has rank 2(n- k- I), i.e. the kernel I, of the form ci@ on p, is 
of unit dimensions. 

We shall call the submanifold W non-characteristic if it is non-characteristic at all 
points. If k ~0, i.e. W is a hypersurface in M, then the second condition follows from the 
first, and the definition given above becomes standard [51. 

Clearly, the submanifold Wlcpk)C MP*+I of the general position is (locally) non-character- 
istic. 

The kernel II: of the form de on P,c T,W (see condition 2)) will be called thecharacter- 
istic direction on W, and the integral curves of the field of characteristic directions are 
the characteristics of the manifold W. When k = 0 the above definitions are the same as the 
standard definitions 151. 

Below we shall show that the characteristic directions are obtained by restricting on W 
the directions of some Hamiltonian vector field on M, and we shall give explicit formulas for 
the corresponding Hamiltonian. 

2. Hamiltonian systems. In the method of characteristics, we place the vector field 

g,, in correspondence with the function Q, on the contact manifold (M, p) , the field being 
defined by the following conditions: 

B 6% = 0; d@ f&s. nf = d@(n), if B (nf = 0 !2.1) 

In the case of the manifold (R*nS-1, a) the field so has components (8@/8p, -a@iaZ -p8@i% 

(P, ~h4). We shall call CD a Hamiltonian, and ?,a a Hamiltonian field with the Hamiltonian 

CD. In a number of cases a.different definition I61 is convenient. The field fo touches 
the hypersurface d, = 0 and defines on it a characteristic direction. Using the Hamiltonian 

fields se we form the "Poisson's bracket" of smooth functions Y and @on M according to 

the formula 
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(2.2) 

where the expression on the right hand side is a derivative of Y in the direction to. 
The quantity (2.2) can be written in the space (Rzn+l, a) in the form 

(2.3) 

and is also called the Jacobi bracket 171. The term Poisson's bracket is used more often 
when @ and Yare independent of u. 

3.Characteristic directions. Let W?(n-k)CM2n+’ be a submanifold of codimensions 
2k + 1 in the contact manifold (M*“+l, f%), defined bythe (2k -b 1) -th equation F, = 0, i = 0, 1, 

. . ., 2k, where Fi are smooth functions on M. The following proposition establishes the 
criterion of the non-characteristic nature of W. 

Proposition 1. Let z E W and the forms dFi (z) and p(z) be all independent. Then W 
is non-characteristic at the point z if and only if the matrix 

A = llsij I( = II{F:FJ) 11, i, j = 0, 1, . . ., 2k 

has (highest possible) rank of 2k. 

(3.1) 

Indeed, if dFi and fi are independent forms, W is a submanifold and the first of the 
conditions of non-characteristic nature given in Sect.1 is satisfied. 

Let us consider the contact hyperplane fi= 0 in T,M, denoting it by N, and denote by 
PEN the intersection N n T,W, by L=cNr the subspace generated by the vectors :F~(z) , and 
by o the bound of the form db on N. From the definition of the contact structure it follows 
that o is a non-degenerate form, and the definition of the Hamiltonian vector fields implies 
that the spaces P and Lq are orthogonal supplements of each other relative to the form 0. 
Indeed, the condition 0 (SF,(Z), 11) = 0, q E N iS equivalent to the fact that dFi (q) = 0, i = 0, 1, . . . . 

2k, i.e. that Q is a vector tangent to W. Further, since 

it follows that the condition imposed on the rank of the matrix A will be reformulated thus: 
the kernel ker(o/ Lo) of the form o is one-dimensional in the space Lo . However ker(o 1 P) = 
P n Lo= ker(oI LO), since P and L” supplement each other orthogonally. Consequently the condi- 
tions dimker(oIP)= 1 and dimker(o) Lo)= 1 are equivalent and the proposition is proved. 

Corollary. The characteristic direction 1, on Wcoincides with the direction of the 
Hamiltonian vector field EH, where H=B,F, + B,F, + . . . 6rkFak, and the vector function 8 = (e,, 

. ., I&,) satisfies the equation 
A8 = 0 (3.2) 

where the matrix A is given by (3.1). 
Indeed, in proving Proposition 1 we have established that 1, = ker(o IL”), where Lois a 

space stretched over the vectors zi = &,(z). The kernel ker(o 1 Lo) of the form o on L" oonsists 
clearly of the vectors E = Z8&, such that 

0 (E, Ei) = ze10 (et, Ei) = Xaifej = 0, i=O, . . . . 2k. 
which proves the corollary. 

The solution of the system (3.2) can be obtained in explicit form. Let us fix the index 
j and put in (3.2) ei = Ail where Aij is the cofactor of the element ail of A. Using Cramer's 
rule, we obtain 

i$e a,,,& = 6,j det A= 0, m,i=O,l,..., 2k 

since A is a skew symmetric matrix of odd order. Thus system (3.2) has a solution 0 with 
components 8i = Aij , representing the homogeneous forms of degree 2k of the elements of the 
matrix A. The conditions e+o and rank A = 2k are equivalent. 

We shall show that-system (3.2) has a solution I3 = h E (&, . . . . A.& where hl are forms 
of degree k of the elements of A. Let Ai be a metrix obtained from A by deleting the i-th 
row and i-th column. The matrix is skew symmetric, of order 2k. 
any such matrix, then its Pfaffian is well defined 181' 

If B =I[ btj)I represents 

Pf (4 = 1 c e (il, is, . . . , jlk) bj,ja . . . bjPk_ljlk 2kkl 
‘II 

where s (i1, . . ., Jo) is the evennessof the subustitition 
det B. 

s+j,. We know 181 that [Pf(B)12 = 

The following assertion generalizes this identity in a specific sense, and defines the 
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required solution h of system (3.2). 

Proposition 2. Let 11 be a skew symmetric matrix of odd order. Then 
1) Ai, = h&,, h, = (-1)" Pf (A,), s = 0, 1, . . ., 2k; 

2) A:j = AiiA,,, i.e. Aft is the geometric mean of Aij, Ajj; 

3) the vector h = (J.,, . . ., hi) satisfies the equation Ah = 0. 
The condition rank A = UE is equivalent to h+ 0. 
To prove it, consider the matrix A*=tja"ij/ of order Z&+2, *here &+~=Y~, of Ogi, j<2k, 

0 0 
9 *+I = Q. %k+l i = --vi if Of if 2k,~&+~~+~- 0, and vi are independent variables. Then A‘is a skew 

symmetric matrix of even order and we have 

It can be shown that 
dat A" = [Pf(A")]* (3.3) 

d&A"= $ Aij30j, Pf(A-') E $ (-1)“Pf (A& 
&i-O i=* 

Therefore, assertion 1) of Proposition 2 is equivalent to (3.3). Assertion 2) obviously 
follows from 11, since &i = [Pf (A#. 

Earlier it was shown that A8=0, where Bi= A$J=&~. COnSequentfy kjAh = A8 = 0, and 
hence Ah=O, which completes the proof. 

Theorem 1. Let the submanifold wP( n-k) C Mzn+' be defined by the equations Fi = 0, i = 0, 
1 7 . . -t i?k and let the condition of the non-characteristic nature hold: the forms dFi and p 
are independent on Wand the matrix A =II{F$J)II is of rank 2k. Then the Hamiltonian 

If= 5 hiFi, Ai=(-I)‘Pf(AiJ, i=o ,...,2k i 
i=o 

3.4) 

defines the characteristic vector field & on W. 
We note that if the manifold WC-M is defined by the equations Fi = 0 only locally, 

then the assertion of the theorem is also of that character. 

4. The Cauchy problem with unknown boundary. Consider the following problem. 

The functions Fi (z} E c=, 2 = (s, p, u) E Ran+l, i = 0, l,.., 2k, k < n, the manifold ,I’tr+l c R” of 

codimensions k f 1 and the integral manifold I&+~ C W2(n-k) = {z E R2n+l: Fi (z) =i 0. i = 0, 1, ,. 
2k}, lying above I'kct (i.e. the form a = 0 on the planes tangent to LP+~ and the projec- 
tion x: z-r define a homeomorphismof tk+t and P,& are all given. The functions FI and 
the manifolds Lk+l, FL+, are studied in the neighbourhood of the points z* = (r*, p*, u*)E R?""l, 
x* E R". We require to find, in the neighbourhood of the point x*, the functiqn u(x)E C2 
and smooth manifolds PjC R", j = 0, f,.. . . k of codimension j, satisfying the conditions 

rkcl c rk c . . . c r. (4.1) 

(X, 8U @)/8X, I(. (I)) E Lk+t. 5 E rk+t (4.2) 

Fi(r,au(z)/a~,u(~))=O, XEI'~, O,<i<2j:i=O,...,k 14.3) 

Conditions (4.2) plays the part of the boundary values in the Cauchy problem; equations 
(4.3) impose additional conditions on the unknown manifolds Pr, j = 1,..., k; and F, = 0 holds 
in the neighbourhood rO of the point I*. 

We 'introduce the following notation: AL is a square matrix of order 21, obtained by 
deleting the m-th row and column from the matrix A' =II(FgF,- }II, O,< i, j < 21; yl ERn is a 
vector defined by the formula 

The following assertion gives the sufficient condition of existence anduniqueness in the 
small of the solution of problem (4.1)-(4.3). 

Theorem 2. Let the vectors yory,,. . .,y, at the point z* and the space T, tangent to 
r kc1 at she point x*, together generate Rn.. Then a solution of the problem (4.1). (4.2) 

exists, is unique, and can be constructed by integrating the (k + I)-th system of Hamiltonian 

equations with Hamiltonians of the form (3.4) 

II 

N,=_x(-l)'Pf(Ai')Fi, 1=1,...,h; H,=Fo 



To prove the theorem, we shall show that the initial problem can be reduced to that of 

solving a similar problem with the initial fixed manifold rr of codimensions k. Then k 

steps will yield the integral submanifold L, c w2" = {z E Rpn+l: F,(z) = 0) lying above r0 CR". 

Since the projection n:z+z from &to r0 C R" is a diffeomorphism, we can write L, = 
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((x,p(x), u(z)):s~r~} for some functions p: Rn+Rn, u:R”-R. From the condition that a = 0 
on the tangent planes in L,we find l5,61, that p (5) = 8u(z)/6$ and we can now confirm that 
the function u(x)and the manifolds rj = n(t)), constructed in consecutive steps for j = k, 
k - 1, . . ., 0, represent a solution of the problem in question. 

Thus it is sufficient to describe the construction of the integral submanifold L,CWzftl-lrf, 
containing Lk+l and projecting itself diffeomorphically on rk =n (Lk). From the conditions 
of the $heorem it follows that the characteristic directions on lP(n-k) are transversal to 
the integral submanifold &+rC WnfrrLf and or any ZE Lb+, the plane T, is stretched over 

T&+1+ while the characteristic direction 1, projects isomorphically on = (T,). The field EH 
(see Sect.2) where the Hamiltonian H =Hkr defines the characteristic direction on Wgtnmk). 

we know 15, 61 that the dimensions of the isotropic subsapce doesnotexceed half the 
dimension of the space with non-degenerate symplectic form, therefore, every space T&k 
tangent to L, must contain a characteristic vector &(z) otherwise we obtain an isotropic 
subspace T,L, of dimensions n-k in the non-degenerate symplectic space (Z'JV n {b = 0})/1, 
of dimensions 2 (n-k-t). Consequently LK must be invariant with respect to the phase flux 
of the field EH, i.e. it must consist of integral curves of the field &r, emitted from Lk+*. 
Thus we arrive at the integral manifold LkC we(“+, lying above rk = n(&)CR" [51. 

The procedure described above gives a means for constructing a solution of the proposed 
Cauchy problem with unknown boundary , and contains the proof of its uniqueness. 

5. On the construction of singular manifolds in extremal problems of 
dynamics. We shall describe the procedure for constructing singular motions and manifolds, 
using the results of Sect-l-4. The procedure is substantiated in f4,9] and in the present 
paper. We note that to use the approach proposed we must previously define the concept of 
the motion (especially of the singular motion) of a positionally controlled dynamic system. 
A method given in, e.g. 121, can be used to achieve this. 

The basic unknown quantity in the problems of optimal control and differential games is a 
a function of the optimal result V(z),, ZER” satisfying, at the poirits of smoothness, the 
Hamilton-Jacobi, Bellman-Isaacs equation P,(z, p)=O,p= v, fil We shall call the manifolds 
in R"at whose points at least one of the quantities F+,p, V is discontinuous, the singular 
manifolds. The manifolds can contain segments of optimal motions, and these will also be 
called singular. We shall further assume that the manifold in question can be locally in- 
cluded in the closure of a region in which the relation p= p(zf is smooth and continuously 
continuable to the closure. The values of x and p(x} at the point ‘2 of a similar manifold 
r CR" can be connected by conditions of the form Fi (z, p, V)=O, The latter have the 
meaning of the necessary conditions of optimality (see [9] and Sect.7 of the present paper). 
Moreover, the fundamental equation F,=O also holds on I'. . In the cases considered the 
total number of independent constraints (satisfying the condition of non-characteristic nature 
of Sect.31 Fi = 0 is odd i = 0,1, . . ., 2k, and k is equal to the codimensions of the manifold 
r. The manifold J? itself is a projection onR"of a family of solutions of the system 

z* = II,, p’ = - H, - &p, v’ zz (p, HP) (5.1) 

released from a manifold Lk+I~W. The Hamiltonian of system (5.1) of the form (3.4) is con- 
structed using the constraint function 8'~ as the basis. 
specially in each specific problem [lo]. 

The manifold & must be determined 

Generally speaking, the set of functions Fiis defined non-uniquely. A set of functions 

Fj for which the vector Ra= 2 liFgp d t e ermines the field of tangentsto the singular motion 

(the trajectories) isofinterest. The convenience in this case lies in the fact that the 
singulai motions and the singular manifold r are determined simultaneously, The functions Ft 

w\ - \ &=&+J 
Fig.1 Fig.2 
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given in [9, 101 determine a field of vectors tangentsto the singular motion. 
Let us write the Hamiltonian (3.4) for k=.: 1 

We assume that the function Fz has a special form 

Let a funCtioR F*(X, p, v) vanish on the manifold L,Cw*(*n, defined by the set F,,, p,, 
Fs. Then F* is the first integral of the system (5.1), (5.2). Taking (5.3) into account, we 
have on L, 

{FsFo] {F*FJ + {FJ,) P*Fo> = 0 (5.3) 

Writing the system (5.1) for two sets of functions F,, Fi, F, and F,, F,,F* and taking 
(5.4) into account, we can confirm that in both cases the systems are identical apart from 
the differentiation parameter. 

Thus Condition (5.3) guarantees that when the function F,of the form (5.3) is replaced 
by any other function F*vanishinq on L,, then the Hamiltonian field does not change and 
consequently the family of integral curves (motions) on r also remains unchanged. 

Let US consider two types of singular manifolds of codimensions 1, which can be con- 
structed using the Hamiltonian of the form (5.2). 

6. Equivocal manifold. This manifold is encountered in problems of the theory of 
differential games fl]*and has no analoque in optimal control. Quantitatively speaking, the 
equivocal manifold is a surface of refraction of the optimal trajectories (the switch-over 
of the controls of both players) along which singular optimal motions are also possible [9] 

(Fig.1). 

When a similar manifold is constructedinthe usual manner, the function V(x) can be assumed 
given in some primary subregion D,where it will be denoted by S(x). The function of the 
optimal result is continuous on the equivocal manifold 

P, (5, y) = v - s (2) = 0, .r EE r (6.1) 

and its gradient, satisfying the condition of optimality of the form (q= s,)[g] 

Fv. (5, P) --= G(r, 4 (4, p) = 0 (6.2) 

is discontinuous. 

The relation G (z, q, p) 5 0 in (6.2) resembles the Weierstrass-Erdman conditions in the 

variational calculus, in connecting the derivatives of the unknown function on both sides of 

the discontinuity, and makes possible the continuous matching of two smooth segments of the 

solution of the extremal problem. 

Mathematically, the construction of the equivocal surface reduces to the Cauchy problem 
with an unknown boundary [4]. The solution of this problem yields the procedure for construct- 
ing the manifold r given in Sect.l-5. Here k= 1, the function F, determines the basic 
equation and the function F,,F, are given by the formuals (6.1), (6.2). 

In [S] it was shown that two types of equivocal manifolds are possible. In the first 

case the optimaf. control (limit control from the region BI) of one player is determined on 
the manifolds non-uniquely; the equations F,&G=S and Fe=0 determine the optimality of 
two values of the control vector. In the second case the optimal controls are unique every- 
where and the o@dnal motions must arrive at ?J from D, with tangential Contact. The condi- 

tions of tangential contact are written in the form [Sl (see conditions (5.3)) 

F* (% P) = (Fop, P -P (4) = (PI~O). = 0 (6.3) 

The equivocal surface which is an envelope, appears in the game theoretic problem of the 

pursuit of an inertialess object by the pursuer, in the Presence of an obstacle within which 

both players are forbidden to appear IV, fol. The Bellman-Isaacs equation in this case has 
the foym F,~F@)+~=O where P(p) is a homogeneous, first degree function. The initial 

solutionS(r equal to the time of pursuit from the initial position XI with the Players 
moving along a geodesic. System (5.1) can in this case be reduced to the form f7,81 

z* = Fp, p‘ = &%,F,. F&F,,& P)l@ -4 :6.4) 

where Spr F,p are Hessians. The motions defined by the system (6.4) are Curvilinear, and all 
other optimal motions in this problem (except the motion along the edge of the obstacle) are 

rectilinear. The case of objects moving in a plane +6Rl, was studied in detail in [iol. 

7. Universal manifold. The universal hypersurface consists of the Singular optimal 

trajectories. The optimal motions touch the trajectories on both sides of the surface (Fig.?!. 
The function of optimal result V(r)may be smooth on the universal manifold [It] , and here we 
assume this to be the case. The maximum function (minimax for the game theoretic problems) 
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defining the basic equation is discontinuous. Denoting this function by different symbols on 

each side of the surface, we arrive at the conditions 

F, (5, p) = 0, F, (z. p) = 0, 5 EE I’ (P = v,) (7.1) 

In addition to (7.9) , we shall require that the following relation (see condition (5.3)) 

holds on T‘: 

ZJs (x, P) fz {FiJJ = 0, x E r (7.2) 

When the functionlV(x)is doubly smooth , condition (7.2) follows from (7.1). Indeed, 

differentiating equations (7.1) with respect to the component xi of the vector 2, we obtain 

where p1 are the components of the vector p, It is clear that C,#FX/Bp* - Cl,aF,/api ==: 0. Sum- 

ming the left hand side from i--l to i= n and taking into account the fact that 8p& = 

@Jt&, we arrive at (7.2). 
In the case of the problem of optimal control (e.g. with respect to high speed response) 

with Hamiltonian E=HB +-i&f1 - 1, 1 u I< f;ff, =Ht(z,@,),= --p linear with respect to the 
scalar control U, condition (7.2) represents the known necessary condition for the singular 
trajectory [3]. Indeed, the functions Plhave the form F, II, -H, + 1, F,- Hi, -t H, -!- 1, 
Hi = H*(x, p). From this we obtain, on the singular motion 

H, E 0, H,’ = ‘1% {F,F,} = {H,H,} = 0. 
Let us assume that the functions (7.1), (7.2) are independent and use the Hamiltonian 

(5.2) to construct the system x*= Hp?p*== -H, on the manifold W 

(7.3) 

P l = - wczllFl~Fez - {Fro {FOFll) Fl, 
System (7.3) represents the description of the well-known equations of singular character- 

istics 131 in the form of a sliding mode. More accurately, the sliding mode corresponds to 
a choice of the differentiation parameter in 17.3) such that the sum of the coefficients 
accompanying FOp and F,s is equal to unity. 

The proposed approach enables us to write, in the cases in question, the equations for 
the.motions lying on the discontinuity manifold using the normal procedure of constructing 
the canonical equations with a smooth Hamiltonian. the control parameters are eliminated 
from the process after the corresponding extrema have been computed. The programmed optimal 
control for the singular motion can be recovered after constructing the solution for the 
canonical system, using its right hand sides as the resulting control for the sliding mode. 
Here the relative proportion of utilisation of the phase velocity Ft, in the sliding mode 
is proportional to the &-form of order k relative to the Poisson brackets assembled from 
the functions Fj, j- O,l, . . . . 2k. 
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